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Abstract 

The methods of linear and circular statistics are used 
to derive summary descriptors for a unimodal 
distribution of torsion angles (r;). The arithmetic 
methods of normal linear statistics are complicated 
by the phase restriction - 180 < 7" i ~--- 180 °. Phase 
adjustments must be made to generate a correct 
arithmetic mean (-L,) which spans _180 ° in a 
Newman projection of the re. A general single-pass 
algorithm is described for the calculation of this 
mean, its standard error ~r(-L,) and the sample stand- 
ard deviation o'(r,,). The single-pass technique is 
restricted to distributions in the range r_< 180°; a 
preliminary pass is required for broader distribu- 
tions. The r; are, however, properly represented as a 
circular distribution and the established formalisms 
of circular statistics should be applied. Here a circu- 
lar mean or preferred direction (-L.) may be derived in 
a single pass for a distribution of any range. The 
variance of the distribution may be assessed in terms 
of the concentration, R, of data points around the 
mean -~c. A circular standard error o-(~c) and a 
circular sample standard deviation ~r(rc) may then be 
derived. It is shown that the arithmetic and circular 
descriptors are numerically similar, except for broad 
distributions. The circular method has computa- 
tional advantages in minimizing phase-shift opera- 
tions and the results are more realistic and reliable 
when used in further statistical tests. 

I. Introduction 

Previous papers in this series (Allen, Doyle & Taylor, 
1991a-c; hereafter ADT1, ADT2, ADT3) have 
described symmetry-modified cluster-analysis 
algorithms for the identification of conformational 
minima. The techniques were applied to a number of 
substructural fragments located via searches of the 
Cambridge Structural Database (CSD; Allen, Ken- 
nard & Taylor, 1983; Allen & Davies, 1988). Frag- 
ment conformations were defined by N, torsion 
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angles for each of the Ny occurrences of the frag- 
ment. The algorithms (ADT1, ADT2) then attempt 
to divide this multivariate data matrix into homo- 
genous conformational subgroups, taking account of 
fragment toposymmetry and enantiomorphic 
inversions where appropriate. For each conforma- 
tional subgroup, of population Np, we obtain N, 
distributions of torsion angles, each distribution con- 
taining Np values. 

An integral part of this work involves the 
derivation of simple summary statistics for each of 
the N, distributions, assumed to be unimodal if the 
clustering process has been successful. In our first 
implementation (ADT3) we used the standard for- 
mulae of linear statistics to calculate the arithmetic 
mean ~,,, its standard error o'(~), and the sample 
standard deviation ~r(ra), for each distribution. 
These quantities are important (ADT1, ADT3): (a) 
in assessing the most representative fragment in any 
cluster, i.e. that fragment whose torsion-angle 
sequence ri(i= I~N, )  most closely matches the 
sequence of means (Ya)/; (b) in giving some 
indication, through the cr(-L,)i and ~r(ra)~, of the 
conformational homogeneity of any cluster; and (c) 
in assessing intercluster separations in conforma- 
tionai space, in terms of dissimilarities between the 
mean torsional sequences for each unique pair of 
clusters. 

The accepted definition of a torsion angle r (Klyne 
& Prelog, 1960) generates the phase restriction - 180 
< r-< 180 °, i.e. r is a circular function for which 
+_ 180 ° are equivalent limiting values. This restriction 
causes obvious problems in the systematic generation 
of arithmetic means, ~ ,  for distributions of r; these 
difficulties are briefly summarized in the first section 
of this paper. We also show how some of these 
problems can be overcome and assess the compu- 
tational requirements of the solutions proposed. 

The methods of linear statistics are, of course, 
formally correct only when applied to distributions 
of linear functions [e.g., bond lengths (Allen, Ken- 
nard, Watson, Orpen, Brammer & Taylor, 1987)]. 
For torsion angles, and for other angular data, the 
methodology of circular statistics is more appro- 
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priate (see, e.g.,  Mardia ,  1972; Upton  & Fingleton, 
1989). In the second part  of  this paper  we apply this 
formalism to the calculation of  the circular mean 
direction, -~c, and its associated error  estimates. We 
also examine the circumstances in which the arith- 
metic mean,  -G, may  be regarded as a satisfactory 
approximat ion  to ~c. 

2. The arithmetic mean 

The ari thmetic mean of  a distr ibution of  torsion 
angles ri( i  = 1---,n) is: 

-~,, = /n (1) I Ti  

and the sample s tandard deviation is given by: 

o'(I",,) = ~ (-G - ri)2/(n - 1) , 
i = 1  

or by: 

(2a) 

0"(7",,) = n (Ti) 2 -  )2 / [ n ( n -  1 (2b) 
i = 1  

Equat ion (2b) is computa t ional ly  preferable, since 
the necessary summations  may be accumulated 
during a single pass through the distribution. The 
s tandard error of  the mean is then: 

Ov(-Ta) = OV(Ta)/n 1/2 (3) 

Equat ions (1)-(3) are applicable so long as the range, 
r, of the distr ibution (however broad)  does not span 
the + 180 ° limit (e.g.,  r~ in Fig. 1). Where the range 
does span + 180 ° (r b in Fig. 1) the simple mean b~ = 
- 4 5  ° (Fig. 1) is generated for z ~ . = - l l 0 ,  - 1 7 5 ,  

0 ° 
b l , =  - 4 5  ° ~ = 260 ° 

_ 9 0  ° + 9 0  ° 

- 1 1 0  ° 

r,, = I00°~~ 

I ~ _ ; ,_180 ~ + 1 5 0  ° 
! 1 b 2  

= _ 1 ~ o :  

Fig .  1. T w o  c o m p l e m e n t a r y  z d i s t r i b u t i o n s .  D i s t r i b u t i o n  (a) s p a n s  
the  c l o c k w i s e  r a n g e  r ,  f r o m  - 1 1 0  to  + 1 5 0  °. D i s t r i b u t i o n  (b) 
s p a n s  the  c l o c k w i s e  r a n g e  rb f r o m  + 150 to - 110 :~ a n d  i nc ludes  
- 1 7 5  ~ as  a d a t a  po in t ;  bl is the  s t r a i g h t f o r w a r d  a r i t h m e t i c  

m e a n  o f  r ;  = - 110, - 175, + 150 'I, b2 is the  c o r r e c t  a r i t h m e t i c  
m e a n  a f t e r  a l l o w i n g  for  the  p h a s e  c h a n g e  a t  _.+ 180 °. 

+ 150 °, rather than the correct value b2 = -  165 ° 
(Fig. 1) which is obtained if + 150 ° is expressed as 
- 2 1 0  °. For  computa t ional  efficiency we require a 
t reatment  which is independent  of  convention and by 
which (1)-(3) may  be applied in a single pass through 
the distribution. 

One way to accomplish this is to redefine the 
(arbitrary) torsion-angle origin of  0 ° to lie within the 
observed distribution. Since we have no a pr ior i  
knowledge of  that  distribution, it is convenient  to 
redefine the value of  the first angle in the list as r'l = 
0 °. The original value of  r~ now becomes a constant  
offset (denoted to) to be applied to the other ri(i  = 
2--*n) to effect an origin shift to a new distr ibution 
r'~. If we further define for each torsion angle in turn: 

X = 7" i - T o (  = 0 ° for rl)  (4) 

then for r 2 - ~ r ,  we have: 

r',. = X for - 180 < X _< 180 ° (5a) 

z ' ; = l x l - 3 6 0  f o r x >  180 ° (5b) 

r'i = 360 - [X]  fo rX < - 180 °. (5c) 

Equat ions  (5b) and (5c) can be verified by reference 
to distribution b of  Fig. 1. If ro = - 110 °, then X = 
260 ° fer z; = 150 ° and r'i is then - 100 ° by equat ion 
(5b). Conversely, if ro = 150 °, then X = - 2 6 0  ° for z,. 
= - 110 ° and r'i is then + 100 ° by equat ion (5c). 

We may now apply equat ions (4), (5) and (1), (2b), 
(3) in a single pass through the original distr ibution 
to obtain -~', o-(G,) and o ' ( r ' ) .  The o"s will be 
numerically equivalent to the values for the 
unprimed distribution, since they depend on squares 
of  angular  differences. The true ari thmetic mean is 
then obtained by setting: 

X =  ~"  + ¢o (6) 

and re-applying (5a)-(5c) as appropriate .  
The use of  the phase-shifted r'; distribution to 

solve the ___ 180 ° problem does, however, have limita- 
tions for any  distr ibution of  r; wider than 180 °, 
irrespective of  whether or not it includes the _ 180 ° 
point. Thus distr ibution (a) of  Fig. 1, previously 
amenable to equations (1)-(3) in its original 
'unshifted '  form, will only be correctly t ransformed 
to its r; equivalent [via equations (4), (5)] if the 
chosen ro lies within the range C indicated on Fig. 2. 
With ro chosen in this way, all values of  [ r i -  to[ will 
be <_ 180 °. The Zo validity range (ro) for any range (r) 
of ri is given by: 

ro = [r - 2(r - 180)] ° = (360 - r) °. (7) 

Thus  ro decreases to 0 ° as r approaches  360 °, indicat- 
ing (correctly!) that  the mean of  a circular distribu- 
tion is increasingly meaningless, and almost certainly 
not unimodal,  as its range increases to 360 °. Equa- 
tion (7) also indicates that, as r decreases  from 180 °, 
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t h e n  r, ,  i n c r e a s e s  a b o v e  lgO °, i . e .  r o  n e e d  n o t  n e c e s -  
s a r i l y  be chosen from amongst the ri themselves. 
Distribution (b) (+150 to - 1 1 0  °) of Fig. 1 is the 
circular complement (rb = 100 °) of distribution (a); 
here rob(Fig.  2) is now 260 ° or 360--ro. ~ It is the 
choice of ro from within the distribution which pre- 
serves the single-pass application of equations 
(4)-(6), a choice which is generally valid for distribu- 
tions with r _< 180 °. 

If we can be convinced that calculation of the 
mean value of a r distribution with r > 180 ° has 
some validity, then equations (4)-(6) may be used 
provided ro is correctly placed. To do this we must 
sacrifice the convenience of a single-pass procedure 
to gain initial knowledge of the r; distribution so that 
ro may be chosen correctly. Specifically, we need to 
know the bounds of the distribution (rx, r~., Fig. 2) 
and which arc (a or b) carries that distribution. This 
can be done by sorting the ri, to obtain the ordered 
distribution rk, and then locating the largest gap 
between neighbouring points k and k + 1 in the 
sorted list. Gaps may be assessed using the city-block 
metric (see ADT1) employed in dissimilarity calcula- 
tions, recast as: 

G k  = min[([rk +1 - 7k[), (360 - I rk  +1 - rk[)] (8) 

to account for gaps spanning the + 180 ° position. 
The adjacent pair, rk, Tk+ 1, which gives rise to the 
largest Gk, then represents rx,  ry in Fig. 2. Any other 
rk will serve to indicate the relevant arc (a or b) for 
the distribution. In this case ro should not be chosen 
directly from the r; values, but calculated as the 
bisector of the arc containing the distribution (+  20 ° 
for a in Fig. 2). This ensures that ro lies within the ro 
for  the distribution. Equations (4), (5), (1)-{3) and 
(6) may now be applied, but with (4) now covering 
all i = 1--,n torsion angles. We have tested this two- 
pass generation of statistics from a sorted rk distri- 
bution and find it to be completely general. This 

~ , ~ ,  ~ ~o--~_ - = 260" G 

/ I ' , ,  . 

- 90°, [ [ ..~ ' r ° "  + 9 0 "  

rb= 1 0 0 ° ~ _ _ . ~  

_+180 ° +150 ° 
\ 

TV 

Fig. 2. The ro ranges [see text and equation (7)] for distributions 
(a) and (b) of Fig. 1. 

complexity can be avoided, however, by the pro- 
cedures detailed in the next section. 

3.  T h e  c i r c u l a r  m e a n  

The Newman (1955) projection of a torsion angle r 
( A B C D )  may be regarded (Fig. 3) as a unit vector 
C D  with direction r ° [consistent with the Klyne & 
Prelog (1960) convention] measured from the vector 
B A  chosen to coincide with the (vertical) y axis. It 
then has components sinr and cost  parallel to x and 
y respectively. The resultant vector, R, of a distribu- 
tion of torsion angles taken in any order is then: 

R 2= ~ sinr,- + ~ cost/ (9) 
i =  I i =  1 

whence the c i rcu lar  m e a n  or p r e f e r r e d  d i rec t ion  
(Upton & Fingleton, 1989) is given by: 

-~c = tan-  1 sinri C O S T /  

i =  1 i =  1 

= t a n - ' ( C x / C y )  (10) 

where Cx and Cv are the sums of the vector com- 
ponents along x and y respectively. Because of the 
torsional phase change at _+ 180 °, a more complete 
definition is needed to ensure the correct radial value 
of ~¢: 

t an  - I ( Cx /  Cy) 

-~,. = tan-I(C~/Cy) + 180 ° 

tan-I(Cx/Cy ) - 180 ° 

Equation ( l l )  differs from that given by Upton & 
Fingleton (1989), who use the 0-360 ° convention for 
angular measurement often employed in this area of 

for y > 0  

for x > 0 ,  y < 0  (11) 

for x < 0 ,  y < 0 .  

A 

COS r~ + COS 72 + COS 73 . 

COS T~ + COS 72 

COS r~ 

B,C 

. . . . . . . . .  e- 

- - -  ! 

I 

I 

, I 
sinr~ sinr~ sink'1 

+ + 

s i n r 2  s inT2 
+ 

sinr3 

Fig. 3. The resultant vector, R, of a distribution of  torsion angles, 
r t - r 3 ,  represented as unit vectors whose direction is measured 
clockwise from the y axis. 
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statistics. Obviously ~c may be evaluated for any 
range r in a single pass through the torsional distri- 
bution. 

The length of the resultant vector R [equation (9)] 
provides some measure of the variance of a circular 
distribution. If all unit vectors are collinear, i.e. all r~ 
are equal, then R = n, the number of angles in the 
distribution. If the data have mutually opposed 
directions which cancel completely (e.g., r~ = + 30, 
r2 = -  150°), then R = 0 and there is no preferred 
direction. This result should be compared with a 
finite arithmetic mean, r~, of - 6 0  °. The mean vector 
length: 

R = R/n  (12) 

then represents the concentrat ion  (Upton & Fingle- 
ton, 1989) of the r; about the mean direction -~. 
Values of R approaching unity correspond to 
increasingly narrow unimodal distributions, i.e. to 
reducing variances in the samples. 

Various methods have been proposed (Mardia, 
1972; Batschelet, 1981) for relating R or R to some 
estimate of circular variance. Here we use the treat- 
ment of Fisher & Lewis (1983), who approximate V, 
the circular variance of 7c for a well-populated 
unimodal distribution as: 

where: 

V = n(1 - ~p)/4R 2 (13) 

I n 
~o = cos(2-~) ~ cos(2ri) 

i=l 

+ sin(2-~) ~ sin(2ri) /n. (14) 
i=1 

The (1 - a )  confidence interval for the mean direc- 
tion is then given by the central limit theorem as: 

-~c+_sin- l[u~(2V)~/2]=-L.+_sin-~(u,~&~) (15) 

where u~ is the upper 0.5a point of a unit normal 
distribution and Oc is termed (Fisher & Lewis, 1983) 
as the e s t i m a t e d  circular s tandard  error of -~c, i.e. the 
circular analogue of the standard error of the sample 
mean. 

The quantity &c is dimensionless, only attaining 
physical reality (in degrees) in combination with u,~ 
via the arcsin function. For a normal distribution of 
a linear variable x, the standard error of the mean, 
o'(~) [equation (3)], represents a 68.3% confidence 
interval (since u~--1.0). Hence we may estimate a 
o'(Yc) in degrees as: 

tr(-L.) = sin- l[(2V) '/2] = sin- ~(&~) (16) 

whence the standard deviation of the sample may be 
estimated by analogy with equation (3) as: 

o'(rc) = nl/2o'(~,.). (17) 

We perform these transformations to provide a 
direct comparison between the arithmetic and circu- 
lar results, thus providing a formalism for the assess- 
ment of ri distributions which is common to that for 
linear distributions. Comparison of equations (15) 
and (16) shows that this common formalism is 
acceptable only when: 

sin-l(u,, &c) = u~sin-l(&c) (18a) 

or equivalently when: 

sin[u,,~r(~,.)] = u~sin[~r(~c)]. (18b) 

Equations (18) are obviously true for small values of 
&,. and ~r(¥c). Indeed, for the 99-75% confidence 
limit (u~ = 3-0) usually employed in crystallography 
(Jeffrey & Cruickshank, 1953), the approximation of 
equation (18) becomes untenable beyond a ~r(-~c) 
value of ca 15 ° corresponding to a &c value of ca 
0.26. 

A useful property of equation (15) is that if 
u~(2V) ~/2 is greater than unity, then the confidence 
interval is undefined. In such cases the mean direc- 
tion, -~c, is so poorly determined that it may not be 
worth reporting. For u,, = 1-0, the maximum possible 
value of ~r(-L.) from equation (16) is 90 °. From a 
computational viewpoint, equations (13)-(17) are 
efficient, since they depend upon summations in (14) 
which can be accumulated, along with those of equa- 
tion (10), in a single pass through the r, distribution. 

4. Limits and range of the distribution 

A knowledge of the limits and range of a r distribu- 
tion (i.e. rx, ry, r in Fig. 2) is not required for the 
derivation of Z.. It is useful, however, to include 
these quantities in any summary. For a linear distri- 
bution the upper and lower limits are simply estab- 
lished arithmetically during the averaging pass 
through the data. For a circular distribution these 
concepts are not applicable: the distribution (b) of 
Fig. 2 (+  150 to - 110 °) will doubtless contain values 
close to +_ 180 ° which would qualify as upper and 
lower bounds in purely arithmetic terms. 

A simple solution is possible for all distributions 
where r < 180 °. We assign initial values of (say) 
- 999, + 999, - 999, + 999 ° to the maximum and 
minimum absolute values of both the positive and 
negative torsion angles, denoted as Ir + max I, [r + min I, 
Jr-max[, ] r -min I respectively. In general all four will 
have values ___ 180 ° after a single-pass analysis of the 
data distributions (a-d) in Fig. 4. Limits are either 
- I r - m a x l  to It+max[ (a,c) or [r+minl to [ r -min I 
(b,d). Two special cases exist (distributions e and f in 
Fig. 4) in which angles in the distribution are either 
all positive or all negative. Here, either the second 
pair (in e) or the first pair (in J) will retain their initial 
values at the end of the pass. The values obtained for 
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I '+min[, Ir-maxl in (e) and -I~'-minl, -Ir-maxl in 
(f) are obviously the limiting values for these distri- 
butions. The assignment of labels 'upper' and 'lower' 
to these limits is now only a matter of definition. In 
this work we define the rotation from lower to upper 
in a clockwise sense, by analogy with Klyne & Prelog 
(1960). The limits for (e) remain as above, but those 
for (]) must be interchanged to comply with this 
definition. Derivation of the range r is a simple 
matter. In the more general case, of which the distri- 
butions of Figs. 4(a-d) are examples, the range r is 
either: 

r , -  I -maxl + I +maxl (19) 

o r  

r2 = 360 - (l~--min I + Ir + mini). (20) 

We simply test that either r~, or r2 lies in the range 0 
< rz, r2 < 180 in order to assign the correct limits. 
Distributions with r > 180 ° generate both rl and r2 > 

180 ° and considerable further analysis is required to 
establish correct limits. In these rare cases we con- 

• m a x  r '  m i n  
r m a x  = " r .  

_ ; ' ,  - - z ,  

(a) (b) 

"r rain I,.-min x 

(c) 

"r ' rain = r t  

(a) 

/ 
" r "  r a i n  ' r  rain. 

= "r,, 

= . 

(e)  ( f )  

Fig. 4. Determination of upper and lower limits 0",, 7-~) and range 
(r) for six different z distributions (a)-(f). 

sider it sufficient to set a range of -999.0  ° with 
limiting values of -999-0, + 999.0 ° to draw attention 
to the situation. True limits, based on the largest gap 
[see, e.g. ,  equation (8)], may be deduced by inspec- 
tion of the distribution if required. 

5. Results and discussion 

In the current implementation of the cluster analysis 
routines (ADT3) we calculate both arithmetic and 
circular summary statistics in a single-pass 
procedure. The arithmetic results are derived via 

equations (4)-(6) and (1)-(3), i.e. we assume a range 
r_< 18ff ~. The statistics comprise (a) the number of 
observations (N/), (b) the lower and upper limits of 
the distribution r/ and T,, and its range, r, (c) the 
arithmetic mean y~, (d) the standard error of the 
mean ~r(-~), (e) the sample standard deviation ~r(r,). 
Summations for the circular analysis are collected in 
the same pass. The additional statistics presented are: 
or) the circular mean -~,., (g) the concentration R, (h) 
the circular standard error, b',., (i) o(-L.) from 
equation (16), (/) o'(rc) from (17), (k) the 99.75% 
confidence interval of-L., denoted as c(L.), calculated 
from equation (15) with u~ = 3.0. If (i), (]) or (k) are 
undefined, then a value of -99.00 is reported; if (i) 
lies in the range 15-90 ° where equation (18) becomes 
increasingly invalid, then the value is reported with a 
negative sign. 

Representative results for a wide variety of 7" 
distributions (taken from ADT1, ADT3) are pre- 
sented in Table 1. The arithmetic and circular means 
are reassuringly similar for all but the broadest 
distributions. The largest discrepancy occurs for dis- 
tribution 10 of Table 1, which is taken from the final 
single-linkage overlay of all 222 six-membered carbo- 
cycles of ADT1. This distribution, as well as that of 
11 (Table 1) is multimodal in any case. This multi- 
modality is suggested by the very high sample stand- 
ard deviations for 10 and l l, and, particularly, in 
their low values of the concentration (R). 

The arithmetic and circular statistical descriptors 
are also seen to be very similar. The exceptions are 
the two multimodal examples already noted, and the 
two smallest distributions (6 and 7; Table 1), where 
the circular statistics o-(-L.), o'('r,.) are somewhat low 
by comparison with their arithmetic equivalents. 
Examination of Table 1 also shows that c(-fc)= 
3o(-L) for most of the examples, but deviations from 
this equality increase with increasing o-(~c) as 
expected from equation (18). The single statistic 
which appears to convey the maximum information 
about a distribution is the concentration R. The 
physical meaning of R is simple to visualize, and it is 
by far the easiest to calculate, even in manual opera- 
tions. 
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Table 1. Summary statistics for a variety of torsion-angle distributions taken from ADT1 and ADT3 

Distributions i-4 are from single-linkage clustering of six-membered carbocycles (ADTI). Distributions 5, 8 and 9 are from single-linkage analysis of the 
steroid C(17) side chain (ADT3). Distributions 6 and 7 are from the Jarvis-Patrick analysis of azacycloheptane (ADT3). Distributions 10 and 11 are taken 
from final single-linkage overlays of all fragments of six-membered carbocycles (10) and steroid side chains (!1). 

Nr rl ru r -io ~ ~r( ra) a(r,,) ~r(?o) o,(-i,) b ,  c(-i,) -R 
I 35 - 2.7 0.9 3.6 - 0.5 - 0.5 0-7 0.7 O. 1 O. 1 0.002 0.4 1.000 
2 51 53.3 65.0 11.7 58.6 58.6 2-7 2.6 0.4 0.4 0.007 1.2 0.999 
3 51 - 61-6 - 36.2 25-4 - 50.0 - 50.0 5.1 5.0 0.7 0.7 0-012 2.1 0.996 
4 11 - 56'3 - 44.1 12"2 - 52" 1 - 52" 1 3'5 3"3 1" 1 1'0 0"018 3"0 0'998 
5 50 159-8 - 159.9 40.3 177.4 177-4 8.2 8-2 1"2 1"2 0.020 3.5 0"990 
6 4 - 50-2 - 7-6 42.6 - 25- I - 25.0 18-3 16.1 9.2 8" 1 0.1 40 24.9 0-962 
7 6 19.7 66.9 47.7 42.7 42.6 20. I 18-9 8.2 7.7 0.134 23"8 0.950 
8 78 3'2 88"4 85-2 56"8 57.3 20" 1 19.5 2.3 2.2 0.039 6"6 0-942 
9 50 - 16"3 88.4 104.7 52.0 53"5 28"9 28.2 4-I 4.0 0.070 12-1 0.883 
10 222 - 116-2 60.5 176.7 - 12.0 - 10-2 50.4 60.7 3-4 4"1 0.071 12.3 0-657 
11 108 - 133.9 119.8 253.7* 10.4 10.1 64-6 83.0 6.2 9.3 0.162 29.1 0.487 

* Numerical values obtained by inspection of the distribution. The program will set appropriate default values as decribed in the text. 

6. Concluding remarks 

This paper has investigated two ways in which a 
statistical summary may be provided for a distri- 
bution of torsion angles. Some, if not all, of the 
pitfalls associated with the arithmetic approach to 
circular data have been highlighted and some solu- 
tions proposed and tested. The formally correct 
approach to the problem, via the methods of circular 
statistics, is also described and a number of descrip- 
tors of a distribution (assumed to be unimodal) are 
presented. Comparative results for a number of real 
distributions, with varying numbers of observations 
and angular ranges, indicate that the arithmetic and 
circular means, -ca and L., are not significantly differ- 
ent, at least for the distributions studied. There are, 
however, some disparities between the arithmetic and 
circular estimates of (a) the standard errors of the 
means and (b) the sample standard deviations. This 
is especially true for broad distributions and those 
with small populations. 

It is clear that the circular method has a number of 
computational advantages, especially in reducing the 
need for irritating phase-shift operations. Hypothesis 
testing on the value of-~c is quite straightforward, 
since confidence limits are readily available (see, e.g., 
Snedecor & Cochran, 1980). Indeed, the confidence 
limits based on circular statistics are almost certainly 
more reliable than their arithmetic counterparts. 
They are also likely to be more realistic, in view of 
the limitations inherent in equation (15). One 
obvious problem is the possibility that the distribu- 
tion may be multimodal, but this is a problem 
inherent in all statistical methods. We note also that 
a wide variety of additional techniques, many of 
them based on the resultant vector length R 

m 
[equation (9)] or concentration R [equation (14)], are 
available in circular statistics (Mardia, 1972; Upton 
& Fingleton, 1989). These include assessments of the 
shape and modality of a distribution, tests of 
uniformity, goodness-of-fit, and procedures for the 
comparison of two or more samples. 

We thank Dr Robin Taylor for valuable discus- 
sions and Dr Olga Kennard FRS for her interest in 
this work. 
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